A group of electronic devicesMany of us will have received electronic devices as Christmas presents, whether it’s a smartphone, a tablet, or a smartwatch. And while we surely appreciate the great benefits of such devices, it is equally interesting to reflect on what’s behind their complex technology. What makes them tick? And what place do springs and pressings have in making a smartphone work smoothly? It’s time to find out.

Nestled in nanotechnology and microelectronics, springs and pressings are indispensable elements that enable the multiple functionalities that define our electronic devices and extend their durability. In this exploration, we take a closer look at the micro-sized power of springs and pressings, discovering their role in the world of electronics.

A person holding a phone

Electronics in Our Everyday Lives

In the fast-paced, tech-driven world we live in, electronics have woven themselves into the very fabric of our daily routine. From the moment we turn off our smartphone alarms in the morning to the number of steps counted by our smartwatches at the end of the day, we constantly connect, communicate, entertain, and engage within the frame of our digital companions.

Behind the sleek facade of high-resolution screens and minimalist designs, a universe of complex engineering thrives. It is a fascinating labyrinth of printed circuit boards, clusters of transistors, rows of LEDs, and a multitude of capacitors and resistors that function synergistically.

In this system, springs and pressings may not immediately jump to mind when we think of our high-tech gadgets, yet they are the components that make the functionality of our devices possible. Springs are behind the tactile feedback of every button press on a gaming console; pressings help secure components, provide electrical contact, and even assist in heat dissipation. These elements don’t merely exist within the devices but are central to the way they work, bridging the gap between user and technology. In fact, springs and pressings are evolving in sync! Let’s delve into their specific applications.

A close up of a cell phone

Understanding Micro-Sized Springs and Pressings

Both micro-sized springs and pressings, despite their tiny size, carry a significant weight in the electronics industry. Although small, understanding these components, their nature, and functionality is fundamental.

Micro-Sized Springs: Flexing Their Power

Micro-sized springs, as their name suggests, are small but precisely designed components capable of storing and releasing mechanical energy due to their elastic properties. These springs come in numerous forms to suit different mechanical needs in various electronic devices. Be it compression springs used for resistance, torsion springs for rotational twists, or tension springs for tensile forces, these micro-sized springs are engineered to meet specific criteria of force and response under consistent or varying loads.

Pressings: Precision at Its Peak

Pressings, on the other hand, are precision-crafted workhorses. Manufactured through one of the most reliable and efficient means of mass production, high-speed precision press stamping, they form complex shapes and structures with remarkable accuracy. They are commonly used in interfaces requiring robustness, electrical contact, superior thermal conduction, and even shielding against electromagnetic interference, like connectors, switches, shields, and even heat sinks.

Also, given their consistent production quality, they are central to maintaining the balance of quality and cost-efficiency in electronics manufacturing.

A close-up of a screw on a computer board

From Efficiency to Durability: the Contribution of Springs and Pressings

Imagine the zippy action of a camera shutter, the responsiveness of a game console button, or even the hinge of a laptop. Behind these simple mechanics, there are springs and pressings!

Micro-sized springs are no small players when it comes to smooth and controlled movement. They hold potential energy, like a coiled-up slinky, ready to spring into action whenever they’re needed. Whether it’s regulating the keys on a keyboard, activating a camera’s shutter, or controlling the retractable mechanism in pens, springs are hard at work, contributing greatly to an electronic device’s efficiency.

Metal pressings may not spring into action like springs, but they offer unyielding support and stability to electronic gadgets. They are the strong types that are moulded into precise shapes to fit just right and hold things together, adding strength to structures, serving as shields for sensitive elements, or even helping dissipate heat to cool things down. It’s like having a trusty sidekick, perfectly shaped and ready to support, adding lasting durability to our devices.

A machine with several screws on a circuit board

Applications in the Electronics Industry

Of course, the employment of micro-sized springs and pressings is not limited to consumer electronics. In the overall dynamic world of electronics, the need for precision, dependability, and adaptability is essential.

For example, the role of springs in healthcare offers the necessary level of accuracy and quality to allow medical devices to function with great efficiency, contributing to safe and effective patient care. In automotive, another sector that is evolving at lightning speed, springs and pressings’ contribution to automotive electronics makes sure that vehicles remain connected and secure as we drive toward a sustainable future. In aerospace, bespoke springs and pressings are critical in flight control systems, avionics, satellite communication devices, and military-grade equipment.

All in all, from the smallest gadgets that accompany us every day to the most advanced systems that propel us into the future, these tiny components never cease to improve the performance and reliability of those devices that continue to transform and enrich our lives.

European Springs & Pressings’ Unique Manufacturing Capabilities

At European Springs, as a leading pressing and small spring manufacturer, we are at the forefront of this micro-sized revolution. With a focus on quality and speed, we have positioned ourselves as a powerhouse in the production of micro-sized components for the electronics industry.

Contact us today to learn more about our services and products, and let us be your trusted partner in your next project.

A black taxi on the street

In the pursuit of a more sustainable future, over the past few years, the automotive industry has witnessed a remarkable transformation with the rise of electric vehicles. Advancements in battery technology, charging infrastructure, and government policies supporting the adoption of electric cars are only a few of the many changes the sector has seen. However, we must not forget that if these significant shifts were made possible, it was thanks to an essential component: springs. As indispensable elements in the design and functionality of electric vehicles, springs ensure that various systems are efficient, contributing to electric cars’ overall success.

In this blog, we will discuss the evolution of electric vehicles, the key milestones in their development, and the principal factors driving their popularity. We will also see how at European Springs, as a leading UK spring manufacturer, we have adapted to support the automotive revolution.

A car dealership with a sign

The Evolution of Electric Vehicles

Although it may seem recent, the story of electric vehicles traces its origins back to the beginning of the 19th century. Over time, this form of clean energy transportation has seen tremendous progress and has now established itself as a feasible and preferred alternative to cars powered by internal combustion engines.

In their early phases, electric cars were limited in terms of range and performance due to inadequate battery technology. However, the game-changing shift happened in the automotive industry with the invention of rechargeable lithium-ion batteries, which gave electric vehicles the ability to travel longer distances without the need for constant recharging. This technological leap allowed them to rival their petrol-fuelled counterparts, marking a significant milestone in their evolution.

Then, another major change happened; in 2008, the Tesla Roadster was unveiled, and it was a game-changer. This stylish and high-performing electric car broke the paradigm of electric vehicles being aesthetically unappealing or having poor performance, not only revolutionising public perception but also prompting other manufacturers to invest heavily in electric vehicle technology. Since then, the field of electric vehicles has seen continuous advancements. The creation of more efficient electric motors, the progressive refinement of battery technology, and the widespread establishment of charging infrastructures have all played their part in augmenting their growth.

A car charging at a charging station

Electric Cars and Their Popularity: The Driving Factors

Several factors have contributed to the increasing popularity of electric cars in recent years, and we mentioned a few technological ones. However, these driving factors extend far beyond technology and cover consumer interest, government policies, and industry buy-in.

Starting from a technological standpoint, innovations in battery technology have significantly increased the energy density of lithium-ion batteries, allowing for longer driving ranges and faster charging times. As battery costs continue to decline, electric vehicles have become more affordable, narrowing the price gap with traditional internal combustion engine vehicles.

At the same time, governments worldwide started implementing policies and incentives to encourage the adoption of electric vehicles, including tax credits, rebates, and infrastructure investments. On top of this, the growing awareness of environmental issues and the need to reduce greenhouse gas emissions and improve air quality has also fuelled the demand for sustainable transportation solutions, making electric vehicles an attractive option for eco-conscious consumers. In some cases, governments have even mandated the phasing out of fossil-fuel cars in the next couple of decades to accelerate the transition to electric vehicles.

Buy-in from the auto industry is another relevant factor, and major automakers (the most famous being Tesla) are increasingly investing in the research, development, and production of electric vehicles. Finally, the ongoing construction of a robust charging infrastructure, which is fundamental, is speeding up the use of electric vehicles, as this reduces concerns about range limitations and simplifies the charging process.

A black and silver car with wheels

The Essential Role of Springs in Electric Vehicles

While much attention is given to the high-tech components of electric vehicles, the role of springs is often underestimated. As electric vehicle technology evolves, so do their spring systems, which are essential in several key aspects. For example, they ensure smooth operation and overall safety, providing enhanced functionality largely through the vehicle’s suspension system. As the entire weight of the car rests on the springs, their compliance helps absorb the impact of road irregularities and shocks on the passenger compartment. Some electric vehicles are even adopting air spring suspensions, which are becoming very popular in premium vehicle segments.

But this is only one aspect. Let’s take a closer look at where and how springs come into play.

Suspension Systems: as we said, here, springs contribute to a comfortable ride by absorbing shocks and vibrations. In electric vehicles, where the weight distribution may differ from traditional cars due to the placement of batteries, the suspension system relies on specially designed suspension springs to maintain optimal balance and ride quality.

Battery Packs: the weight of electric vehicle batteries requires robust suspension systems to support and stabilise the entire vehicle. Specially custom-designed springs help distribute the load evenly, ensuring a safe and efficient ride.

Charging Connectors: springs are utilised in the design of charging connectors, ensuring a secure and reliable connection between the charging station and the electric vehicle. This is fundamental for the seamless transfer of electrical power during the charging process.

Braking Systems: in the braking systems of electric vehicles, springs are critical in assisting in the smooth function of brake pedals and contributing to overall safety. Regenerative braking systems, common in electric vehicles, rely on springs to facilitate the transition between regenerative and traditional braking.

Other Hardware: springs, as fundamental components working in the background, find applications in various other systems and mechanisms of electric vehicles, from door handles and latches to seating systems. Their versatility and reliability enhance the overall performance and longevity of these electric vehicles.

Whether for suspension, vibration-damping, or even energy generation, we can easily understand how springs serve a fundamental role in the mechanical operation and passenger experience of electric vehicles.

A group of toy cars connected to a power outlet

European Springs: Paving the Way for the Electric Cars Revolution

As a prominent spring manufacturer and supplier, at European Springs, we recognise the importance of supporting the electric vehicle revolution and the changing needs of the automotive market.

By investing in research and development, we have engineered specialised springs to meet the unique requirements of electric vehicles. These springs are designed to withstand the specific loads and conditions associated with electric cars, improving their efficiency and longevity.

We have also collaborated with automakers to provide custom solutions for suspension systems, battery packs, and other critical components. This proactive approach positions us as a key player in the transition towards sustainable transportation, aligning with the broader goals of reducing carbon emissions and environmental impact.

Looking Into the Future

We can anticipate further innovations in spring technology to meet the evolving demands of electric vehicles. From materials with enhanced durability to smart springs equipped with sensors for real-time monitoring, the role of springs will become even more central.

Are you an automotive manufacturer? Browse our extensive spring catalogue and find the right spring design for your next electric vehicle. Any questions or requirements? Feel free to get in touch with us; we will do our best to assist you.

 

A close-up of a fan

The Role of Pressings and Springs in Aerospace

The average passenger may overlook them, but the truth is pressings and springs are indispensable in aerospace engineering. These essential components form the bedrock of an aircraft’s structural integrity and massively help operational efficiency.

In this blog, we at European Springs will explore the intricate synergy between pressings and springs, delving into the craftsmanship that defines aerospace engineering. As passengers soar through the skies, it is worth appreciating the complexity beneath the surface, where these unheralded elements work together to guarantee a safe and smooth journey.

Springs and Pressings in Aerospace

In aerospace engineering, pressings, with their precise shapes, serve as building blocks. From reinforcing wing structures to supporting fuselage components, they flawlessly integrate into various structural elements of the aircraft, ensuring its overall strength and durability.

Springs, instead,  represent the dynamic aspect, contributing to the aircraft’s controlled movements and safety mechanisms. For instance, landing gear relies on specialised springs to absorb the impact forces during touchdown, whilst control systems within the aircraft leverage them to maintain stability, offering pilots the necessary feedback for precise and responsive manoeuvring.

The front of a plane landing gear
Springs: Creating the Aircraft’s Skeleton

In aerospace, the significance of springs goes beyond their mechanical functionality; their reliability, precision, and performance stand as foundational pillars. These small components serve as the backbone of numerous systems within an aircraft, contributing to its overall stability, damping capabilities, and the facilitation of precise movements when and where needed.

A prime example of the indispensable role played by suspension springs is evident in the landing gear, the moment of truth in every flight. As one of the most demanding phases for both the aircraft and passengers, a smooth and controlled landing is paramount. Suspension springs absorb the impact forces upon touchdown, transforming a potentially jolting experience into a seamlessly executed descent, ensuring the safety and comfort of everyone on board.

Beyond landings, these springs extend their influence into the aircraft’s control systems and flight control surfaces, regulating motion in the skies. Whether orchestrating subtle adjustments to the plane’s direction or fine-tuning the wing’s angle to navigate diverse flying conditions, aerospace springs are pivotal in enhancing the overall effectiveness and safety of these intricate mechanisms. Their reliability and precision contribute significantly to the seamless dance of an aircraft through the skies.

The engine of a plane

Pressings: The Silent Support Structure

While springs play a crucial role as the functional backbone in aerospace engineering, pressings take centre stage in constructing the physical framework of an aircraft. Renowned for their remarkable versatility, these pressings find applications in various structural elements, fasteners, and mounting systems that collectively ensure the stability and cohesion of every part of the aircraft. Whether forming the skeleton of the fuselage or acting as connectors for critical components, pressings contribute to the aircraft’s overall structural integrity.

In aerospace engineering, where tolerances are exceptionally tight, the precision of pressings becomes paramount. These components excel in ensuring the meticulous assembly of different aircraft parts, ranging from engines to wings and tail assemblies. The ability of pressings to facilitate perfect fits without any margin for error is instrumental in achieving the flawless integration of diverse elements, each playing a vital role in the aircraft’s overall functionality.

Pressings prove their strength in the demanding environment of an aircraft’s engines. As integral components in the construction of the engine’s combustion chambers and as essential parts of the fastening systems that secure engines to the wings, pressings showcase their resilience and strength. Enduring extreme temperatures and pressures within the engine compartment, these components withstand the harshest conditions while maintaining the aircraft’s reliability and performance.

Have you ever wondered how the seats, overhead compartments, and in-flight entertainment systems remain securely fastened in civilian aircraft? Once again, pressings come to the rescue. Their widespread use ensures that everything inside the cabin stays firmly in place, contributing not only to passenger comfort but also to the overall safety and functionality of the aircraft’s interior components.

A group of fighter jets flying in the skySprings and Pressings in Military Aircraft

In the complex world of military aircraft, the collaboration between springs and pressings underscores the utmost importance of these components in ensuring the effectiveness and survivability of aircraft. From withstanding the stresses of high-G manoeuvres to housing sophisticated weaponry, springs and pressings in military aircraft embody the pinnacle of engineering excellence, where precision and durability are not just desirable but mission-critical attributes.

Springs emerge as indispensable; their precision is elevated to meet the rigorous demands of fighter jets and helicopters operating in complex and challenging environments. Unlike their civilian counterparts, these specialised springs are engineered to face extreme conditions, ensuring reliable operation in the face of high-speed manoeuvres, rapid accelerations, and intense vibrations. Their role here extends beyond mere shock absorption during landings; their purpose is to stabilise control surfaces, calibrate weaponry, and contribute to mission success.

Meanwhile, pressings take on heightened importance, enabling the construction of critical components such as the housing for missile systems, weapon mounts, and other vital equipment. The harsh operational conditions that military aircraft frequently endure demand pressings with rugged durability and unparalleled precision. These components not only provide the structural integrity needed to support advanced weaponry but also contribute to the integration of various systems, ensuring reliability in the most demanding combat situations. The combination of strength and precision in pressings becomes a strategic advantage in military aviation, where split-second decisions and flawless execution are paramount.

A close-up of a plane
Why Entrust European Springs?

At European Springs, as a leading spring manufacturer and supplier, we have experienced first-hand how crucial springs and pressings have become in supporting the ever-advancing field of aerospace. With an extensive spring catalogue and bespoke designs, we ensure our products stand up to the demanding standards of the industry.

Our priority is to remain at the forefront of spring and pressing technology, meeting our clients’ needs with quality, precision, and innovation, whether used for civilian or military purposes. We are proud to contribute to the remarkable journey of flight, ensuring each aircraft that uses our components enjoys the benefits of safety, reliability, and precision.

The next time you settle into your seat on a flight, remember the multitude of springs and pressings around you, thinking about how safe and comfortable your journey is, thanks to them.

When it comes to flight, with all its complexities, we understand the importance of getting things right. So, if you are part of the incredible aerospace industry, we are here to assist you in meeting your component needs with our top-quality products.

For any machine application, meeting the required design specifications and ensuring component reliability is crucial, and there are few sectors with more exacting requirements than the defence sector. Any unpredictable behaviour in springs and pressings will lead to catastrophic consequences, especially within military applications.

This is why, at European Springs, we employ precise manufacturing processes, utilising industry-leading machinery. Our stringent approach guarantees springs and pressings that align with defence requirements, ensuring consistent performance and longevity. Read on to learn more about military-grade springs and pressings.

Springs in Ground Defence

Springs are vital components in various ground defence systems as their inclusion in designs significantly improves mobility and performance in a variety of challenging scenarios. For example, you’ll find a broad range from torsion to compression springs used in propulsion systems within armoured vehicles, tanks, and other defence-oriented vehicles.

Another example is suspension systems; our springs manage impacts from uneven terrain and provide optimal comfort for troops operating armoured vehicles. Skilfully designed by our expert team and manufactured to withstand heavy loads and rigorous use, our springs ensure that ground defence vehicles maintain maximum responsiveness, even in the harshest environments.

Additionally, springs are indispensable to firearms and artillery mechanisms, like recoil systems. They assist in dissipating energy when a weapon is fired, contributing to better accuracy, longevity, and safety.

Springs in Air Defence

Our spring design team’s expertise also extends to the aerospace sector, where close tolerances and high-performance materials are essential. Springs play a significant role in numerous aerospace applications, including the safety, longevity, and performance of aircraft.

One example is constant-torque springs, which are used in military aircraft. As part of the complex mechanisms in military machines, these springs play a significant role. One of their primary functions in military aircraft is within the seating mechanisms.

Military drones, which are a specific type of military aircraft, use an array of spring designs to ensure their proper functioning. This includes the drone’s need to withstand high speeds, extreme temperatures, and vibrations.

Additionally, various spring designs, such as parachutes and ejection seats, are integral to safety equipment. Being critical life-saving devices, their dependability and robustness are indispensable, and our springs are designed to deliver consistent performance for their entire lifecycle.

Springs in Sea Defence

Similarly, springs serve crucial functions in naval defence applications as they contribute to powerful propulsion systems that demand durability and efficacy. They also contribute to the manufacturing of sophisticated weaponry used by naval vessels, from gunfire control systems to missile launchers.

While it’s challenging to pinpoint a single most commonly used spring design in military and marine applications due to their vast and varying needs, compression, extension, and torsion springs are standard components found in many naval equipment and devices.

As for the material, the materials used for springs in such high-stress conditions need to be robust, corrosion-resistant, and durable. Therefore, the most commonly used materials are often variants of high-strength steel alloys, as they will frequently need to withstand water, salt, and extremes of temperature and pressure. Other construction materials might include certain heavy-duty, corrosion-resistant polymers, which have been found to be safe and strong for many military applications.

Position of Pressings and Wireforms in Defence

As you can see, whilst it’s common to find springs throughout defence sector applications, you’ll often find general wire forms and pressings within those applications also.  These fine-tuned components drive efficiency across ground, air, and sea defence systems. Here are some examples of their use.

Pressings Applications

Pressings deliver reliability and durability. They are used in applications in radio communication equipment, assisting in signal transmission. In vehicle armour, precise pressings improve reinforcement. They adhere to strict manufacturing standards, ensuring consistency and performance in high-stress environments.

Wireforms Applications

Wire forms, tailored to the task, provide flexibility, strength, and resilience. In aerospace control systems, they ensure seamless operations. Wire forms contribute to vehicle suspension mechanisms, aiding in off-road mobility. Crafted meticulously, they meet the stringent demands of the defence industry, reinforcing reliability in all applications.

Insights from DSEI 2023

Defence & Security Equipment International (DSEI) represents a prominent global stage for defence and security professionals. This event showcases cutting-edge advancements, facilitates collaboration, and fosters invaluable networks across the industry.

This year’s gathering proved to be particularly impactful, framing significant global defence and security discussions under the theme “Achieving the Integrated Force”. This event showcased the future of defence, with an emphasis on collaboration, innovation, and integration across many industries, including manufacturing.

Members of our group regularly attend DSEI, and we regard it as an optimum opportunity to reveal our innovative developments and demonstrate our steadfast commitment to advancing the defence sector.

Attending DSEI presents several undeniable benefits. By engaging in discussions and exploring the latest technologies, we broaden our knowledge and hone our edge. Collaboration with partners and clients ensures constant evolution in our manufacturing processes, maintaining a high level of excellence.

By attending this event, we bring awareness to our position as industry leaders to clients and share our dedication to delivering outstanding solutions in the defence and security sectors.

Defence and Aerospace UK Spring Manufacturer

As part of supplying the defence industry with the highest quality springs, pressings and wire forms, we are often tasked with manufacturing springs needed for aerospace applications — whether that be for next-generation airborne smart decoys, high-spec electrical connectors, the Eurofighter and much more.

We’re renowned for our comprehensive range of springs and wire forms, and for over seven decades, we have established ourselves as one of the most reliable spring manufacturers in the UK and across Europe. Contact us directly to discuss how our manufacturing processes will fulfil the requirements of your next project.

 

The collaboration between manufacturers and energy companies is consistently beneficial, and this is especially relevant when considering the engineering possibilities related to springs. The energy sector, divergent from traditional industries, promotes continuous progression in component design. While this has always been true, it has accelerated in recent years with the increased investments in renewable technologies. Read on to explore how these two sectors work collaboratively for the betterment of each other and the world.

The Power of Collaboration Between Spring Manufacturers and Energy Companies

Whilst stock springs provide consistently reliable results, this limitation often proves to be restrictive for the evolving nature of applications in the energy sector. This creates a persistent demand for custom spring design, further encouraging collaboration with spring manufacturers to engage in innovative pursuits to fulfil the needs of the changing sector.

The rewards for energy companies within this collaboration are substantial. By having spring manufacturers create custom solutions, they obtain products that align directly with their specific needs. It is this higher level of manufacturing control and quality that encourages sustained reliability—an essential element in the energy sector.

The collaboration is not confined to addressing intricate engineering difficulties alone. The openness of the partnership fosters iterative feedback exchange across many areas, from component specifications and capabilities to how they are sourced for responsible manufacturing. Energy companies communicate their unique challenges, enabling spring manufacturers to refine their expertise. It represents a symbiotic relationship driven by common objectives, including efficient solutions, operational excellence, and market competitiveness.

European Spring’s Work With the Energy Sector

We have decades of experience interfacing with electrical power entities across Europe. Our skill set is anchored in our ability to construct high-quality springs, pressings, and wire forms – components that are indispensable in various energy-generation mechanisms and machinery.

Our springs for electrical power primarily revolve around the creation of components designed specifically for electrical applications, acting as the foundation of numerous widely used electrical products. The intricate fabrication of these customised solutions demands a keen understanding of precision engineering underpinned by comprehensive experience in the field. We utilise a unique blend of technical craftsmanship and innovative methodologies to deliver components that align diligently with our client’s requirements.

Central to our operations is a commitment to serve a broad spectrum of industries with our springs and bespoke pressings. Geographical borders do not restrict our manufacturing expertise. Collaborating with global associates, such as the Lesjöfors Group, we take pride in our ability to design, produce, and deliver esteemed products to customers across the globe.

Role of Spring Designs in the Energy Sector

As a dedicated UK spring manufacturer, we harness precise mechanical properties in designing springs. Compression, torsion, and extension springs comprise our core portfolio.

Compression Springs

Our specifically designed compression springs serve a pivotal role in energy generation. These springs store energy and exert a resisting push force when compressed. In energy applications, they are often found in safety valves, acting as a central element in preventing pressure build-up.

Torsion Springs

Torsion springs, another key product, operate by applying torque or rotational energy. Depending on their design, these springs can store and release angular energy or simply hold a mechanism in place. They are frequent constituents of generator mechanisms, providing crucial support in maintaining operational efficiency.

Tension Springs

Tension springs, distinguished by their tightly coiled loops, store energy and create resistance to pull forces. Commonly employed within electrical switchgear and circuit breakers, these springs aid in managing electricity flow and promoting safety standards.

Wire form Designs in the Energy Industry

At European Springs, we fabricate intricate wire forms, each tailored to their unique energy sector applications. Designing these wire forms demands an integration of innovation, precision, and versatility to adequately serve the broad energy sector needs.

Our wire forms are often utilised within power line transmission systems. In these settings, they prove indispensable for securing key elements and promoting transmission efficiency. Custom-designed wire forms also find applications in housing and securing electrical wiring in power stations or distribution equipment.

Pressing Designs and their Impact on the Energy Sector

Equally critical in our line of work are bespoke pressings. We design and manufacture pressings that offer unique solutions tailored to energy industry applications.

Our precision pressings provide invaluable mechanical advantages within energy systems. These often act as connectors within electrical systems, such as circuit breakers and switchgear. Their design and manufacture necessitate a deep understanding of the EC directives connected to the energy market.

In conclusion, our tailored spring designs, wire forms, and pressings are integral to the energy industry’s demands. Whether driving efficiency, promoting safety, or ensuring connectivity, our products epitomise the power of precision engineering in the energy sector.

Bespoke Spring Manufacturing for the Energy Sector

As a spring manufacturer working with international electrical power companies, our role extends beyond the simple manufacturing of components. We are partners in progress with this sector, providing the energy sector with robust and effective spring solutions that propel the industry towards more efficient energy generation and distribution systems.

Our constant pursuit of pioneering spring designs triggers new possibilities for future energy production, including renewables. Contact our team directly to discover how our expert engineer’s work will benefit your energy facility.

Springs are essential components within almost every application, from commercial products to industrial machinery and transport. The unique requirements of these varied applications demand the creation of a broad range of spring designs, each tailored to fulfil a specific role; this is where spring design comes in.

Read on to explore the complexities our engineers and spring designers overcome as they mass-produce a broad range of these invaluable components for every industry.

compression spring schematic

The Importance of Spring Design

The importance of design in spring manufacturing cannot be overstated. Precise measurements and careful consideration of various elements are crucial. A bespoke spring design must account for factors like type, load, and movement, as even the slightest alteration can impact performance.

For example, simply changing the material of a spring can significantly impact its capabilities, even without modifying the dimensions. Even a slight adjustment to the outer diameter of a spring can make a world of difference.

When designing a spring, it is essential to consider aspects such as free length, solid height, number of coils, travel and load, force capacity, spring ends, and inner diameter.

We collaborate closely with our clients during the manufacturing process, ensuring our experienced team can effortlessly assist in creating the perfect spring design for your project.

Moreover, it is vital to prioritise spring design before finalising other components of your product. Neglecting spring design can result in safety issues or failure to perform as desired.

A well-thought-out spring design produces the following benefits:

  • Longevity, as the design considers the spring’s operating environment and material specifications.
  • Exceptional quality, thanks to carefully selected spring materials and manufacturing processes.
  • Compatibility with the product it will be integrated into, as precise dimensions are accounted for during the design stage.

Considering the correct spring design also helps to avoid budget overruns. Improperly designed springs can be unreliable, potentially causing product launch delays and increased expenses due to rework or requiring additional batches. By ensuring the initial design is correct, you can have functional springs with the right dimensions, eliminating the need for fixes or reordering.

At European Springs, we encourage collaboration with our customers with our spring design support service to understand your specific needs and ensure that every aspect of spring design is thoroughly evaluated to deliver the best possible results.

Force, Displacement and Stiffness in Spring Design
The fundamental characteristic to remember about springs is their ability to store potential energy when deformed and release it when the deforming force is removed. Force is not the only aspect to consider when designing spring specifications; there is also displacement and stiffness. Here is an explanation of what defines each:

  • Force refers to the applied external load or the resistance a spring offers to deformation.
  • Displacement is the change in position or length of a spring when subjected to a force.
  • Stiffness, however, quantifies how resistant a spring is to deformation. It is determined by the spring’s material, geometry, and dimensions. Higher stiffness means the spring requires more force to induce a given displacement.

Understanding the relationship between force, displacement, and stiffness is key to designing efficient and reliable springs. These fundamentals are essential to establishing the core requirements of the eventual spring design.

spring rate diagram

Spring Design Considerations at European Springs

Designing an effective spring requires a thorough understanding of its operating environment, the application requirements, and the spring material’s physical characteristics. For designers and manufacturers to achieve optimal performance from a custom spring, they must consider several fundamental design principles.

Spring Material Choices

One of the most critical factors in spring design is the choice of material. Selecting the right material can ensure that the spring has the required strength, durability, and corrosion resistance for its intended use. Common materials used in spring manufacturing include stainless steel, carbon steel, high-carbon spring steel, and alloy steel.

Once the material is chosen, designers must consider the spring’s dimensions. Spring dimensions are calculated with a high degree of accuracy using theoretical models. At European Springs, their designers use in-house developed software for all traditional spring types and specially configured FEM software for complicated geometries. This ensures the spring can withstand heavy loads, achieve the required deflection, and maintain its shape and function over time.

Spring Mechanics and Functionality

Designers must also be mindful of each metal’s mechanics, strength theories, and potential functionality. The effect of residual stresses and the control of these stresses are important and are always considered in every design. Our experts maintain detailed knowledge of the many applications and all the standards and specialities that are required for optimal spring design.

Another critical factor to consider is the processing methods involved in spring manufacturing. Processes such as coiling, end grinding, shot peening, and heat treatment are all important considerations in spring design, as they can affect the spring’s performance, fatigue resistance, and longevity. At European Springs, its manufacturing process is adaptable to any specific customer requirement, with various treatments applied to its springs, from electroplating to powder coating.

CNC spring machining

Furthermore, high-speed shock loading and transient phenomena are areas that are important in some applications and are taken into consideration by industry experts. Professional teams can select stress levels through specific training and experimental processes, evaluate creep relaxation and fatigue performances and determine the best processing methods and surface treatment for a particular application.

It is worth noting that the process of spring designing involves many different branches of science. This includes the above-mentioned material science, processing methods, and mechanical engineering theories, spring manufacturing technology, and the importance of tool/control of residual stresses. European Springs encourages and supports customers with a high understanding of springs, spring materials, and surface treatments to work with the company’s team of experts to achieve the best products in the spring and pressing field.

Prototyping and Testing
Prototyping and testing play pivotal, final role in the spring design process. Through iterative design improvements and validation, we refine our designs to achieve optimal performance and reliability. By closely examining each aspect of the prototype and rigorously testing it in real-world conditions, we ensure that our springs meet the highest quality and performance standards.

CNC spring machining operation

Bespoke Spring Design at European Springs

At European Springs, we pride ourselves on our expertise and commitment to delivering exceptional prototype spring and pressing designs. With our team considering various design factors, embracing innovative approaches, and employing collaborative design processes, we create springs that perform flawlessly and enhance the overall design. Contact us today to discover how our custom spring design service can meet your exact requirements.

HOW CAN WE HELP YOU?

    Fields marked with an *are required

    This form collects your name, email, company name, phone number and your enquiry so that one of our team can communicate with you and provide assistance. Please check our Privacy Policy to see what we'll do with your information.