A group of metal products

Initially developed in the 1940s for jet engines, superalloys have come a long way since then, emerging as highly versatile materials used across a multitude of industries. Thanks to their unique composition and exceptional properties, such as impressive mechanical strength, surface stability, and resistance to high temperatures and creeping, they are often implemented successfully in a wide range of applications.

In this blog, we will explore superalloys’ role, main features, and valuable benefits in spring manufacturing. We will explain why they are a superior choice for many industrial applications and see how they allow us to tailor our springs to many different needs and projects.

The Properties and Applications of Superalloys

In spring manufacturing, superalloys are extremely valued for their ability to perform exceptionally well under harsh conditions like extreme stress and heat thanks to several critical properties, including:

  • Excellent mechanical strength.
  • Surface stability.
  • Resistance to creeping.

These invaluable qualities make superalloys a preferred material over traditional options like steel and aluminium, especially when it comes to demanding applications such as turbines, jet engines, industrial machinery, and many automotive and aerospace components.

Their robust nature guarantees that the spring designs they are used for will maintain their performance and structural integrity even in the most challenging circumstances. That’s why superalloys come across as an extremely popular choice for experienced spring manufacturers wanting to infuse their products with impeccable, outstanding efficiency and safety.

Industries That Rely on Superalloy Springs

A person pointing at a computer screenHere are some key industries that benefit from the use of superalloys:

  • Aerospace and Defence: used in jet engines and spacecraft that rely on high-temperature springs.
  • Automotive: applied in high-performance engines and exhaust systems to withstand extreme conditions.
  • Power: critical in turbines and power plants for their durability under high stress and heat.
  • Chemical: ideal for handling corrosive environments and maintaining structural integrity.
  • Medical: found in surgical instruments and implants for their biocompatibility and reliability.
  • Marine engineering: essential for shipbuilding and offshore structures due to their corrosion resistance.
  • Industrial machinery: employed in heavy-duty equipment and machinery for their long-lasting performance.

Different Types of Superalloys: Strength and Versatility

As we explained, superalloys boast a wide range of properties that make them extremely valuable in spring manufacturing. But what types of superalloys deliver the best results in such a delicate production process? Let’s take a closer look.

Inconel

Inconel is a nickel-chromium-based superalloy particularly known for its oxidation and corrosion resistance, especially at high temperatures; in spring manufacturing, this material excels at providing reliable performance in sectors such as aerospace, automotive, and energy production, as it retains its strength and stability in extreme conditions.

Nimonic 90

Nimonic 90 is another exceptional type of superalloy; its composition includes 50% nickel and 20% chromium, with additions of titanium and aluminium. It is renowned for its high strength and excellent creep resistance at elevated temperatures, making it an optimal choice for improving springs’ longevity and reliability in high-stress, extreme-temperature environments.

Hastelloy

In addition to Inconel and Nimonic 90, Hastelloy is a popular choice for producing springs. This superalloy offers a broad range of options for engineers and designers seeking high durability and resilience; in fact, thanks to its remarkable resistance to corrosion and oxidation, it is particularly suitable for chemical processing industries.

Close-up of a pile of rocks

Why Use Superalloys in Spring Manufacturing?

We have briefly touched upon the main reasons why they improve and enhance any spring type; now, it’s time to delve into each advantage in more detail.

Superior Performance in High-Temperature Environments

We have highlighted that one of the primary benefits offered by superalloy springs is their ability to perform at high temperatures. Unlike traditional materials that may degrade or lose strength over time, superalloys are able to maintain their integrity and performance in high-heat environments.

Excellent Corrosion and Oxidation Resistance

We saw that Inconel and Hastelloy, in particular, are extremely resistant to corrosion and oxidation. This characteristic ensures that springs made from these materials have a longer lifespan and require less maintenance, reducing downtime and costs for industries that rely on these components.

Enhanced Safety: Mechanical Strength and Creep Resistance

Mechanical strength, combined with resistance to creep (deformation under stress), makes superalloys ideal for high-stress applications. This is particularly important in industries such as aerospace and automotive, where such qualities are paramount to guarantee safety and overall successful operations.

Adaptability of Superalloys: Custom Springs for Custom Projects

It is evident that superalloys are especially useful in custom projects where standard products and materials fail to deliver the desired results. Whether creating springs for specialised aerospace components or custom parts for complex industrial machinery, superalloys provide the necessary flexibility to design, manufacture, and perfect products that must meet extremely precise specifications and performance criteria.

Custom spring manufacturers leverage such adaptability to deliver unique solutions that address special project demands and create products showcasing superior durability, reliability, and performance. Each project will pose specific challenges, which is why it is incredibly important to assess every request and make sure that each custom spring is designed to perform optimally in its intended application.

Several metal springs and springsNeed Superalloy Springs? Turn to European Springs & Pressings

Are you seeking a trusted spring manufacturer that is able to tailor high-quality springs to your projects using superalloys? Look no further than European Springs & Pressings. Whether your priority is high-temperature performance, corrosion and oxidation resistance, or exceptional mechanical strength, we carefully design and craft superior spring types to fulfil the most complex requirements and deliver outstanding results.

Our extremely skilled and competent engineers boast years of experience in working with superalloys, ensuring that we can provide the best solutions for your needs. Download our spring catalogue or contact us today to learn more about our springs and materials to help you achieve the excellence you and your business deserve.

A metal spring on a black background

You know that springs are our speciality. But how much do you know about springs? While many people can tell what a spring is, identifying it as a helical-shaped component that will compress when exposed to external forces and return to its original form immediately afterwards, they are completely oblivious to the numerous designs and sub-types they come in or how they are made.

As experienced spring manufacturers, we know how vital springs are in various industries across countless systems and specific applications and want to share a little more about them. In today’s blog, we will explore details and interesting facts about one of the most popular spring types we manufacture: compression springs.

Spotlight on: Four Different Compression Styles

When you think about springs, you are likely thinking of compression springs. This type is one of the most frequent and recognisable across a multitude of applications; its main function is to resist highly compressive forces and return to its original shape when the force or load is removed, releasing energy. But we know this, of course. What is interesting, and probably lesser known, about compression springs apart is their availability in a wide range of compression styles, each designed to meet specific requirements. Let’s have a look at each style.

A group of pens on a graph paper

Straight Springs

Straight springs are the most prevalent type of compression spring in various applications. With both the inner and outer diameters remaining constant throughout the length of the spring, their simple design makes them highly versatile and easy to manufacture. We can find straight springs in everyday items such as ballpoint pens, mechanical pencils, and several mechanical devices where reliable performance is essential.

Mini Springs

These spring types are essentially scaled-down versions of straight springs: the two look identical; they are just smaller. Their fantastic compactness and precision make them the preferred choice in the aerospace and marine industries, especially when it comes to delicate instruments and controls, where space is limited but precision is non-negotiable.

Hourglass Springs

As the name suggests, these springs have a distinctive shape. Their diameter tapers at the centre, forming an hourglass shape. This unique design allows for more uniform stress distribution along the length of the spring, providing stability and preventing buckling under compressive loads. Because of this, hourglass springs are often found in complex machinery and automotive components.

Close-up of a machine with a blue metal partDie Springs

Die springs, also known as high-force compression springs, are robust helical compression springs made from rectangular wire and are designed to carry significantly heavier loads than other compression spring types. They can withstand high stress and work fine in difficult and harsh environments, such as industrial machinery, metal pressings, and die-casting applications where heavy-duty performance is essential.

The Five Different Spring Ends

Beyond different compression types, we also have different compression spring ends; each spring end affects the spring’s pitch, height, and overall characteristics, influencing its overall performance and suitability for particular applications. Understanding this aspect will help you choose the right spring, so let’s take a closer look right away.

Open-Ground Springs

Open-ground springs are characterised by their last coil being flat, while pitch is not reduced throughout the rest of the spring. This design provides excellent stability so that the spring stands evenly under compressive forces. For this reason, they are often used in automotive suspensions and industrial machinery.

Open-End Springs

Open-end springs are successfully employed in applications where a steady rate of compression and expansion is critical. They maintain a consistent and reliable coil pitch throughout their length, making them ideal for a wide range of applications, from simple household items like pen mechanisms to complex medical devices.

Closed-End Springs

Closed-end springs feature a reduced pitch at the end of the coil. This reduction in pitch at the ends provides greater stability and support and helps to distribute the load more evenly, reducing the risk of deformation. They are often found in precision instruments and sensitive mechanical assemblies.

Closed-Ground Springs

These springs combine closed-end and open-ground springs. They have a reduced pitch in the last coil and a flat end for enhanced stability and support. The flat end ensures that the spring sits evenly, while the reduced pitch at the ends distributes the load more effectively. They are a popular choice in automotive engines and high-precision industrial equipment.

Specialised Spring Ends

In addition to the common types of spring ends, several specialised designs created to suit specific requirements deserve special mention. For example, double-closed ends, where both ends are tightly coiled, offer even greater stability and load distribution.

A close-up of several metal springs

Why Spring Safety and Durability Go Hand in Hand

Many people don’t think about spring safety, yet it is absolutely essential for ensuring these components’ longevity and performance. Proper care and regular inspection of compression springs, especially during their manufacturing process, can prevent damage and extend their lifespan. Safety protocols typically involve routine checks for wear and tear and complying with the highest safety standards.

To improve compression springs’ safety, it is important to enhance their durability. spring manufacturers like us employ several valid techniques, for example:

  • Shot peening is a process that enhances the fatigue strength of the springs by inducing compressive residual stresses.
  • Plating the springs with corrosion-resistant materials protects them from harsh environmental factors.
  • Proper installation contributes to the longevity of compression springs.

 

Whether you need standard or custom compression springs or are looking for information on how our products can benefit your business, we’re here to help. At European Springs, we pride ourselves on our extensive expertise and the quality of our springs; download our spring catalogue and reach out to our team to learn more. We are dedicated to providing top-notch service and innovative spring solutions to meet your specific needs and help you achieve your goals.

A person drawing a hologram

Like many other industries, engineering and manufacturing are seeing an incredible acceleration in their processes thanks to the ever-growing presence and influence of artificial intelligence (AI). Whether it’s the automotive, medical, or power sectors, complex spring systems are employed to ensure the smooth functioning and safety of machinery, tools, and vehicles. Here, the design, prototyping, and testing of each component are indispensable but can be time-consuming and costly.

This is where AI steps in, driving innovation, reducing costs, and bringing a new level of efficiency to the spring design process. In this blog, we will discuss the latest developments in how AI is revolutionising the manufacturing industry through new methods, ranging from automated design optimisation to rapid prototyping and iteration.

A person holding a tablet

The Power of Automated Design Optimisation

Among the most recent advancements within spring engineering, automated design optimisation emerges as one of the most transformative solutions offered by AI. Through complex AI algorithms, engineers are empowered to streamline the design process; they often identify the most effective spring configurations with great precision and navigate parameters like load capacity, stress distribution, and fatigue life in a fraction of the time usually spent. This proactive approach results in reduced design flaws, enhanced spring reliability, and elevated compliance with performance standards.

Whether AI will help or replace humans at their work is often debated; however, automated design optimisation is one clear example of how the two aspects go hand in hand and make engineers’ lives easier. Thanks to AI, their time is reallocated to focus on creative and strategic aspects of design while AI manages “less exciting” calculations and iterations. As leading spring manufacturers, we are positive this symbiotic relationship will promote continuous improvement.

A close-up of a network

Enhanced Performance through Innovative Material Selection

We have discussed many times how selecting the right material is a critical aspect of custom spring design, as the final choice will impact the performance, longevity, and overall application of the product for better or worse. AI technology turns out to be a precious ally as it significantly contributes to the right material choice. Let’s see how.

  • AI scans through large amounts of data to identify the best materials for each application, considering key factors such as strength, flexibility, fatigue resistance, and cost.
  • Engineers will use AI to predict how different materials will behave over time and in various conditions, allowing them to pick the best-performing ones to improve their durability and performance.
  • AI is predicted to help with developing tailored materials to suit specific requirements. This customisation guarantees that the final spring meets unique criteria that standard options cannot match.

All these substantial contributions lead to higher-quality products that better meet the needs of many different industries.

A person and person standing in a room

AI in Advanced Simulation and Testing for Spring Prototyping

AI-driven tools dramatically improved spring prototyping, implementing new simulation and testing processes and offering a thorough performance analysis of how springs behave under various conditions.

By replicating realistic scenarios with incredible accuracy, including different loads, temperatures, and environmental factors, these simulations allow engineers to understand better the spring types they are designing, ensuring that they are sturdy and reliable. What’s more, these advanced simulations often detect potential issues in the early stages and reduce the risk of costly failures during later development stages, or even actual use.

It is unbelievable to think that, previously, such a detailed level of analysis and testing was time-prohibitive; now, thanks to AI, not only is it possible, but it is also easily achievable and more efficient. Lastly, it is worth mentioning how AI also facilitates rapid and iterative testing of multiple design variations, which we will explore below in more detail.

A person looking at a transparent display

Rapid Prototyping and Iteration in AI-driven Spring Design

With AI revolutionising so many aspects of traditional spring manufacturing, it comes as no surprise that prototyping and iteration are seeing significant upgrades, drastically reducing the time employed from concept to final product. We briefly mentioned how these processes are benefitting from increasing automation, now we will delve into them more specifically.

  • AI-powered tools will quickly generate prototypes based on previously optimised designs, which allows faster iteration, testing, and, thus, innovation cycles.
  • Thanks to efficient AI algorithms, prototypes are created with a higher precision, closely matching the final specifications. This aspect is particularly valuable as it reduces extensive modifications and adjustments during the testing phase.
  • Feedback loop. AI facilitates a continuous feedback loop in which data from each prototype iteration is analysed to inform the next version, leading to exceptional improvements in design and performance with each cycle.

It is clear that AI is invaluable here; not only does it accelerate innovation, but it also delivers products that are perfected to meet the highest standards.

A group of workers in a factory

Staying Ahead of the Curve: Predictive Maintenance and Lifecycle Management

One final aspect we want to discuss regards predictive maintenance and lifecycle management. AI brings priceless benefits here as well, enhancing these areas with its handy insights and automated solutions.

For instance, AI systems ensure a useful proactive approach; they are programmed to effectively and accurately monitor spring performance in real-time and predict when maintenance is required to anticipate potential failures. This way, any critical issue is addressed and resolved before it escalates to something more serious, reducing the risk of sudden breakdowns and extending the spring’s lifespan.

Instead, for lifecycle analysis, AI will follow a spring from design to end-of-life to understand wear patterns, failure points, and optimal maintenance schedules. This will reduce downtime and optimise maintenance costs, leading to more reliable operations and better resource management.

Elevate Your Engineering with European Springs

At European Springs, we stay abreast of the latest AI innovations, employing modern techniques and procedures to keep up with industry advancements and take full advantage of the benefits offered by AI technology. Our commitment to the latest technology ensures that we deliver superior spring design and prototyping services, improving efficiency, accuracy, and reliability. Contact us to learn more about how our successful solutions will elevate your engineering projects, and don’t forget to browse our extensive spring catalogue for all your spring needs.

Several different types of metal springs

Springs are integral to a wide range of applications across an equally large number of industries, from automotive to power to transport and defence. These small yet essential components are critical to key aspects such as absorbing shock, ensuring constant force, and maintaining structural integrity and operational efficiency in industrial machinery. It is then crucial to identify potential issues in the early stages to prevent serious consequences such as equipment damage and setbacks.

But what are the most common spring issues? In this blog, drawing upon our extensive experience as spring manufacturers, we will identify and explore the most frequent ones and their consequences so you can take proactive measures to keep your equipment running smoothly and with longer lifecycles.

Common Spring Issues and How to Identify Them

The various spring designs are made to endure specific forces and harsh environmental environments, which, of course, over time will lead to different issues. The most common include deformation, loss of load, and noise, which derive from factors such as excessive stress, improper use, wear and tear, misalignment, and improper installation.

It is incredibly important that these problems are identified early on, not only to prevent potential dangerous failures but also to guarantee the springs’ reliability, safety, and extended lifespan. Regular inspections and maintenance are then essential to ensure the performance of these components remains excellent. Let’s look into these issues in more detail.

A close-up of a car's springSpring Deformation

Deformation is one of the earliest signs of potential failure and includes the bending, twisting, or warping of a spring’s original shape. It is mainly due to spring failure or improper installation. For instance, compression springs that appear curved or misaligned have likely been deformed; measuring their dimensions and comparing them with the original specifications can help detect these changes.

Spring Loss of Load

Loss of load is another critical indicator of spring failure and happens when a spring can no longer exert the required force. It can result from material fatigue, overloading beyond the spring’s limits, or corrosion, among other factors. For instance, if tension springs cannot maintain their supposed tension or sag under a reduced load, they may have lost their load-bearing capability. Conducting load tests can help confirm this issue.

Spring Noise

Unusual noise, such as squeaking, popping, or grinding, is another frequent sign of spring failure. If you hear these noises, it could indicate that the spring is misaligned, improperly installed, or damaged, as they are often caused by friction with other components or excessive vibration. For example, if your torsion springs produce creaking sounds during operation, it could be due to friction or misalignment. Lubricating the spring and its contact points can sometimes resolve the issue if the noise is due to friction.

A close-up of a rusty springFatigue, Overloading, and Corrosion: The Three Spring Failure Modes

Fatigue, overloading, and corrosion are the three main spring failure modes. Knowing them is vital, as it allows experienced spring manufacturers like us to take the right steps, including accurate inspections and thorough cleaning, to eliminate any potential risks. Let’s explore each mode and understand their impact.

Spring Fatigue

Fatigue mostly affects spring types that undergo repetitive loading and unloading cycles. Over time, this repeated stress can cause micro-cracks to form within the material, eventually leading to complete failure. The spring must be used within its specified limits to prevent fatigue and avoid excessive cycling, and it must be regularly inspected for any signs of wear and tear.

Spring Overloading

Overloading occurs when a spring is subjected to loads beyond its designed capacity. Unexpected external forces can lead to overloading, causing permanent damage or failure. Taking a proactive approach to load management is key to avoiding failures and maintaining the reliability of spring applications.

Spring Corrosion

Corrosion is frequent in those springs exposed to harsh environments where moisture, chemicals, and salts can cause their material to deteriorate over time, leading to premature failure. Signs of corrosion include rust, pitting, and discolouration of the spring’s surface. To prevent corrosion, you should employ plating solutions to improve corrosion resistance in springs or materials such as stainless steel.

The  Consequences of Spring Failure

Spring failures can have a significant impact on both productivity and the bottom line. Let’s look into the main consequences:

  • Machine downtime. When a spring fails, it can lead to unplanned downtime in your machines or equipment. This will disrupt production schedules, cause delays, and affect overall efficiency. Time lost during repairs or spring replacement can result in substantial financial losses.
  • Safety hazards. Failed springs can pose serious safety hazards, endangering both machine workers. In safety-critical systems, such as automotive suspension or braking, spring failures can compromise the overall functionality, putting lives at risk.
  • Increased costs. Spring malfunctions not only lead to costly repairs but also additional expenses, including investigation and diagnosis of the root causes of the spring failure and extra expenses related to any damages caused by the failure.

Only by addressing common spring issues in their early stages can these consequences be avoided, ensuring optimal productivity and efficiency.

Several metal springs and coils

Choose European Springs for Spring Excellence and Reliability

At European Springs, we are dedicated to providing high-quality spring manufacturing services, leveraging the expert knowledge our engineers have developed to tackle and resolve spring failure successfully. In our spring catalogue, we offer a wide range of products crafted with precision and reliability tailored to meet the most diverse needs and projects. Our commitment to quality and personalised support means we are always ready to assist you by addressing any questions or specific requirements. Contact us today to guarantee your spring systems the best longevity and precision!

A close-up of a graph

Springs are invaluable components that, with their many designs, materials, and applications, significantly contribute to an incredibly varied number of industries, and earthquake engineering is no exception. Highly seismic regions like Japan, for instance, require clever, innovative, and flexible solutions to contain serious damage to buildings, infrastructure, and communities as much as possible and avoid both human and economic losses.

Thanks to their capability to absorb and dissipate energy, springs have proven to be real game changers in seismic engineering, and in this blog, we will see why. Drawing upon our extensive knowledge as spring manufacturers, we will delve into effective solutions in several key areas of this fascinating branch of engineering, highlighting how spring technologies help make buildings and urban infrastructures safer and more resilient.

Base Isolation Systems to Improve Earthquake Resilience

Seismic engineering resorts to effective spring applications to build solid base isolation systems, which are specifically designed to decouple a building or structure from ground motion during an earthquake. Here, different spring types are often combined with other materials, such as elastomers, to create hybrid isolators that provide both vertical and horizontal flexibility. By absorbing the kinetic energy generated by seismic activity, springs convert it into heat and reduce the impact of the force that reaches the structure above. We could then say that, basically, base isolators act as a buffer between the structure and its foundation, allowing the urban structures to move independently of the ground and its vibrations.

The effectiveness of base isolation systems has proved largely successful. Despite its complexity, the method has been implemented in various high-risk seismic zones around the world, including Japan and California, to protect new buildings and bridges from severe damage and make them safer.

A close-up of a steel structure

Reducing Vibrations and Protecting Structures with Seismic Dampers

Spring technology is also a pillar of seismic dampers, those devices that in earthquake engineering are meant to dissipate the abrupt energy of seismic waves to reduce the amplitude of vibrations and prevent structural failure. Due to their enormous benefits, these innovative dampers are installed within structures requiring support in withstanding seismic forces, such as buildings and bridges.

There are different spring-based damper types, the most common of which are:

  • Viscous dampers contain coil tension springs that work in conjunction with a viscous fluid to absorb and dissipate energy.
  • Friction dampers use leaf springs to maintain constant pressure on friction surfaces, converting kinetic energy into heat.
  • Tuned mass dampers use coil spring mechanisms to counteract the vibrations of a structure, reducing its powerful oscillations.

By successfully employing seismic dampers, the impact of earthquake activity is substantially lowered, helping regions exposed to high risks to contain damage and losses.

A couple of men wearing hard hats

Strategies for Retrofitting Existing Structures Against Earthquakes

Another important aspect of seismic engineering is retrofitting existing structures to improve their resilience should an earthquake strike occur.

Unfortunately, most older or historical buildings, bridges, and critical infrastructure, like those found in several towns in Italy, were not designed with seismic standards in mind, and they are extremely vulnerable to earthquake damage. Luckily, with technological and architectural advancements, the integration of spring-based systems has emerged as a great solution for retrofitting these structures, enabling them to effectively withstand seismic activity, often eliminating partial or total reconstruction.

Base isolators and the seismic dampers already discussed represent the most common retrofit solutions in existing buildings. The first ones, when installed at the foundation level, reduce the seismic loads transmitted to the building and preserve its structural integrity. The second ones, instead, enhance the building’s energy dissipation capacity, reducing the risk of collapse during an earthquake.

A crack in the wall of a building

Withstanding Seismic Events with Resilient Infrastructure

The first step to making buildings seismic-proof is designing their resilient infrastructure to improve the safety and functionality of communities around them. Here, springs are vital as they provide engineers with flexible, energy-absorbing solutions to strengthen bridges, highways, pipelines, and utility networks.

For instance, bridges are incredibly vulnerable to seismic forces due to their shapes, long spans, and heavy loads. Employing spring-based isolation bearings in bridge design then represents an excellent way to help absorb seismic energy, reducing the risk of collapse. At the same time, pipelines are equipped with spring-loaded joints that allow for fluent movement and additional flexibility, preventing ruptures and maintaining their integrity to avoid dangerous gas, petrol, or water leaks.

As we can see, springs might be overlooked at times, but by integrating them into the design of urban infrastructure, engineers can successfully create systems that withstand seismic events and recover quickly.

A person holding a model of a building

Advancements in Seismic Engineering Technologies

The seismic branch of engineering is surely fascinating and complex, but it is also in constant evolution. Through ongoing research, advancement, new technologies, methodologies, and materials, it aims to enhance earthquake protection as much as possible, using springs as key components.

Recent advancements, for example, include the development of smart spring systems that are easily adaptable to suit varying seismic conditions. These systems are characterised by extreme dynamism as they use advanced materials and sensors to monitor and respond to seismic activity in real-time, providing effective protection promptly. Additionally, energy harvesting and damping control technologies are creating more efficient and responsive solutions, further improved by composite materials to produce lighter, stronger springs that offer superior performance in seismic applications.

Make Urban Structures Safer with European Springs

If you are an engineer specialising in seismic engineering and are working towards making urban structures safer and more resilient for all, do not hesitate to turn to European Springs for premium quality springs that will take your projects to a whole new level.

As leading spring suppliers, we strive to offer excellence and precision in every spring we manufacture, delivering our clients the ultimate customer experience. Browse our spring catalogue and contact us for further assistance if you have specific questions about our services or products.

Close-up of a silver and black metal object

Springs are key components found in an enormous amount of machinery, vehicles, and countless other complex systems across various industries, some of which are extremely challenging due to harsh environments. Here, corrosion emerges as a formidable enemy, compromising materials, lifespans, and overall safety of the equipment springs support due to significant deterioration.

To avoid this and maintain structural integrity and operational reliability, plating surface treatments are the most effective solutions, as they create a barrier against those factors that cause corrosion. In this blog, we will use our knowledge and experience as spring manufacturers to explore the various types of plating solutions available, focusing on their characteristics, invaluable benefits, and overall effectiveness in resisting corrosion.

A black rock with white veinsZinc Plating: The Secret Behind Long-Lasting Springs

Zinc plating is one of the most widely used methods for improving the corrosion resistance of springs. It consists of coating the component with a layer of zinc, which acts as a sacrificial anode. As zinc is more reactive than the steel typically used in spring manufacturing, it corrodes first, protecting the underlying material. This action is particularly relevant in lifespan extension, especially in harsh environments – such as the marine sector – where they are exposed to moisture and other corrosive elements (in this case, salt).

In terms of application, zinc plating is relatively straightforward and cost-effective, which makes it a popular choice in many industries. In the power sector, for example, where equipment is often battered by challenging outdoor conditions, zinc-plated springs resist rust and degradation successfully.

For durability, zinc coatings can be enhanced with additional treatments, such as chromate conversion coatings, for an extra layer of protection. Additionally, the bright, shiny finish obtained makes zinc-coated springs particularly desirable in visible applications.

A close-up of a metal spring

Nickel Plating to Enhance Strength and Shine

Whether torsion springs, compression springs, or tension springs, nickel plating involves adding a supplementary layer of nickel onto their surface through an electroplating process. Thanks to nickel’s inherent resistance to oxidation, the final spring benefits from an excellent protective barrier against corrosion alongside increased hardness and improved wear resistance, which contributes to its enhanced longevity and performance.

Nickel plating is particularly valuable as a protective method due to its ability to withstand extreme temperatures and harsh environments. A fitting example could be springs in hydroelectric power, including turbines, generators, and other critical equipment, which often operate under severe conditions. Thanks to nickel plating, they maintain their structural integrity and functionality over extended periods. The resulting smooth, uniform finish offered by this process also reduces friction and wear, a vital aspect of ensuring the efficiency of moving parts within complex machinery.

A close-up of a silver wavy surface

Chrome Plating for Reflective Strength

Chrome plating is renowned for its outstanding hardness and shiny aesthetic appeal. The coating layer provided by this highly demanded material improves the durability and appearance of any spring type. The plating process sees the application of a thin layer of chromium to the surface of the component, resulting in an exceptionally reflective and tough coating. Its ability to resist corrosion, oxidation, and wear makes it a standout choice for springs heavily exposed to extremely challenging environments.

By benefitting from the robust protection offered by chrome plating, springs used in hydraulic valve systems or other high-stress applications easily exhibit unmatched mechanical strength and corrosion resistance. The most distinctive feature of this coating is that it withstands harsh chemicals and high temperatures, offering an incredibly reliable performance in demanding conditions. Last but not least, the smooth surface of chrome-plated springs reduces friction and wear, improving the overall efficiency and lifespan of the equipment which uses them.

A group of silver nuggets

Electroless Nickel: Precision Coating for Perfect Springs

In industries where springs operate in corrosive and high-temperature environments, electroless nickel plating is particularly advantageous.

This unique plating technique offers extraordinary uniform coverage and excellent corrosion resistance. Unlike traditional electroplating, which relies on an electric current, electroless nickel plating involves a chemical reaction, where a layer of nickel-phosphorus alloy is deposited onto the spring surface. This guarantees an even coating, even on complex geometries and hard-to-reach areas, providing complete protection.

The phosphorus contained in the coating reinforces the components’ corrosion resistance, and, especially in custom spring designs, our team will tailor it to meet specific environmental challenges, especially in custom springs. Electroless nickel plating also provides superior hardness and wear resistance, which is particularly valuable for springs exposed to repeated mechanical stress. All in all, this effective plating solution is ideal for applications such as electrical connectors, circuit breakers, and other components where precise performance is non-negotiable.

Green and Tough: The Benefits of Organic Coatings

Finally, they may be less frequent, but organic coatings are a fantastic, versatile, and extremely effective solution for protecting springs against corrosion damage. They can be designed to offer specific functional properties, such as low friction or increased adhesion, extending the utility of springs in diverse uses.

These coatings are typically composed of polymers or other organic compounds, providing a flexible and resilient barrier that can confidently face a wide range of environmental conditions. Unlike metallic coatings, organic coatings can be applied in various thicknesses and formulations to meet specific requirements, meaning they are completely customisable. They often are an obligated choice across various industries in applications where traditional metal coatings might not be suitable. For example, springs in electronic devices, battery systems, and other sensitive equipment benefit from the non-conductive properties of these coatings. It is worth mentioning an additional advantage: spring types featuring organic coatings resist not only moisture and chemicals but also UV radiation, ensuring long-term protection and durability.

Several metal springs on a table

Make Your Springs More Resistant with European Springs

As a leading spring supplier at European Springs, we excel in providing advanced plating solutions for your springs and offer a variety of surface treatments to meet the needs of diverse industries. These treatments include heat treatment, barrelling, and de-burring, each designed to enhance the performance and durability of our springs.

Our flexible approach ensures that our springs can withstand the toughest environments and deliver the most reliable performance. Browse our spring catalogue or contact us directly to discover how we can help your business achieve more long-lasting solutions.

HOW CAN WE HELP YOU?

    Fields marked with an *are required

    If you would like to send drawings with your enquiry, please email us directly with your enquiry and drawings attached to info.bec@europeansprings.com

    This form collects your name, email, company name, phone number and your enquiry so that one of our team can communicate with you and provide assistance. Please check our Privacy Policy to see what we'll do with your information.