Our team at European Springs thoroughly enjoys attending the various engineering and manufacturing exhibitions throughout the year. The UK is host to most of the best expos in the world thanks to its position as a leader in global manufacturing with its reliable, high-quality products.

We feel privileged to be able to attend these conventions of like-minded experts in our sector, connect and reconnect with business partners, and explore recent innovations that will potentially improve our processes. Today, we’d like to discuss the selection of exhibitions and conferences we’ll be attending over the next few months.

Why Attend? The Human Side of Manufacturing

With much of the business world transferred to computers, it’s easy for some areas of the business to lose the human touch; this is especially true when conducting a lot of business remotely through email or video calls. When you choose to visit our stand, you will find various members of our expert team ready to engage in stimulating conversations and discuss different aspects of our business in a welcoming, friendly environment.

While we do promote remote working for convenience, we enjoy bringing the human touch back to business with in-person talks where original ideas naturally develop and commercial potential emerges. This also extends to other social opportunities these expos provide, such as networking, informative roundtables, and demos of new products and ideas.

Here is a list of some of the exhibitions where you will find us this year!

The National Manufacturing & Supply Chain Conference & Exhibition

This popular conference is hosted in Ireland and serves as a pivotal location where industry leaders, innovators, and stakeholders can meet and explore the possibilities of the UK’s industry together. Events like this are where incredible technological advancements are revealed to remain competitive in the field and propel the industry forward. Like most of the UK economy, it has been a turbulent time in Irish manufacturing in recent years, but now, with record-breaking growth noted, this year’s exhibition is rumoured to be the site for significantly positive news.

Our team will be available at the National Manufacturing & Supply Chain Conference & Exhibition to meet at P04 in the venue during its mid-week running period from the 28th  to the 29th of May. Additionally, we will be returning to Ireland soon with the associated Northern Ireland alternative on September 12th at stand E13.

Manufacturing Solutions 2024

At Manufacturing Solutions 2024, attendees will find a dynamic environment as the nation’s manufacturing companies meet in Ireland to share their expertise. By visiting us and the other companies attending, you get to engage with leading industry experts, thought leaders, and solution providers who are shaping the future of manufacturing. The main focus of this year’s event is exploring additional methods for automation and sustainability, but the most exciting concept being explored is the adoption of AI within existing industry 4.0-supported processes.

You can find our attending representatives at stand G28m on the one day it’s running, June 12th.

Medical Technology Ireland

The Medical Technology Ireland Expo and Conference takes place at the Galway Racecourse and has a prestigious reputation as Europe’s second-largest medical device show.

This event has a more specific focus than the previous ones mentioned in that it focuses on manufacturing and design for healthcare and medical technology. Whilst the focus is more specific, the attendants are broader, with entrepreneurs, startups, and even academic institutions from across Ireland all converging to discuss ways that medical technology can be improved and patient care increased.

Attendees should expect to engage with leading exhibitors showcasing a diverse array of medical devices, equipment, diagnostics, and services, offering a firsthand glimpse into the future of healthcare delivery. We plan to exhibit our medical stamping manufacturing expertise by presenting our latest innovative processes and their potential applications for medical device designers.

This event’s twin recently took place on March 12th in Coventry, and we are eager to see the latest developments when exhibiting at this future show. Come talk to our representatives at stand 101 K01 on the 25-26th of October and discover how we have helped our many successful clients.

Our 2024 Exhibitions: The Perfect Chance to Meet Us in Person

When choosing European Springs, you are choosing a premium quality spring manufacturer that is dedicated to providing your business with the best solutions for your design requirements. Our decades of experience have earned our position as a leading manufacturer of:

Do you want to discuss your business needs with us in person? Or attend demos of innovative products? Come to see us at our 2024 exhibitions! We are eager to meet you, share our work processes, explore valuable opportunities, and discuss how our high-quality components will improve your operations and applications.

If you’d like to reach out to us before these events, please don’t hesitate to contact us today, one of our friendly team members will assist you with any questions you may have.

A robot touching a tablet

Robotic technology is certainly one of the most fascinating branches of electronics, constantly delivering advancements that we could only imagine or see in sci-fi films. As Industry 4.0 rapidly progresses, making automated processes a staple in manufacturing and nearly every other sector, technological innovations are in constant demand for components that will make complex developments easily achievable. Among these components, springs and pressings are versatile and adaptable enablers of robotic systems.

What are their applications? And how are they used efficiently to unlock new levels of mobility, control, and reliability, allowing automation to evolve? In this blog, we explore the different applications of springs and pressings in robotics, showcasing their important contribution to robotic technology.

A robotic arms in a factory

Mobility in Robotic Systems: Mimicking Human Movements

Robots have become integral to an incredibly varied number of processes in many industries, whether used alone or paired with human workers. They are expected and required to tackle complex tasks with agility and precision and navigate challenging work environments with ease. Mobility and manoeuvrability are, understandably, a significant part of robotic systems, which are made possible by the contribution of both springs and pressings.

By incorporating spring-loaded joints and articulated mechanisms, robots successfully mimic some of the flexibility of human movements to interact with their environment easily. This allows them to move over uneven surfaces, overcome obstacles, and perform intricate tasks effortlessly. In addition, advancements in materials science have led to the development of lightweight and durable components, which make robots less heavy while maintaining their robustness. This not only improves these systems’ energy efficiency but also extends their operational capabilities, allowing them to work for longer periods without the need for frequent recharging or maintenance.

A robotic arm working on a conveyor belt

Enabling Precise Control, Handling, and Gripping

In activities that require delicate handling and precise control, such as assembly and pick-and-place operations, springs and pressings are major players in enabling accurate manipulation of objects. By employing compliant mechanisms and force-sensitive components, robots will automatically adapt and adjust their grip and exertion levels based on feedback from sensors, making sure their interaction with objects of varying shapes and sizes is gentle yet effective.

What’s more, springs’ natural flexibility allows for adaptive grasping strategies, granting robotic systems the ability to easily adjust to changes in the work environment and unexpected disruptions. This flexibility is particularly valuable in applications where the exact position and orientation of objects may vary, such as in warehouse automation and specific manufacturing processes. It is then safe to say that, as robotic systems continue to evolve, the integration of advanced metal pressings and springs in electronics will elevate their ability to perform challenging manipulation tasks with utmost precision and efficiency.

A close-up of a robotic arm

Springs and Pressings as Efficient Shock Absorbers

In dynamic environments such as industrial settings and outdoor operations, where shocks and vibrations are prevalent, compression springs and metal pressings act as efficient shock absorbers, mitigating the negative impact of such forces on robotic systems. By incorporating effective shock-absorbing mechanisms and vibration-damping materials, robots will benefit from improved stability and accuracy as well as enhanced reliability and durability, even in challenging working conditions or demanding environments.

For example, in mobile robotics applications such as drones and crewless ground vehicles, custom springs help absorb the vibrations generated by uneven terrain or high-speed movement, ensuring continuous and stable operation. Similarly, in industrial automation, the use of compliant joints and damping parts helps reduce wear and tear on robotic components, extending their lifespan and reducing maintenance costs.

Low-Friction and Lightweight Materials to Improve Energy Efficiency

Energy efficiency is a critical consideration in robotics, especially in applications where power constraints or limited battery life are relevant concerns. Here, springs and pressings improve energy efficiency by minimising frictional losses, optimising mechanical design, and reducing the overall power consumption of robotic systems.

For instance, by employing lightweight and low-friction materials in spring-loaded mechanisms, robots achieve smoother and more efficient motion, requiring less energy to function. In addition, the use of compliant structures and elastic elements allows for energy storage and release so that robots can use kinetic energy during movement and reduce reliance on external power sources.

A person in a safety vest and white helmet working on a machine

Boosting Resilience in Robots’ Structural Integrity

The structural integrity of robotic systems is essential to their safe and effective functioning in terms of reliability and performance. In this regard, springs and pressings emerge as critical components, offering invaluable support and strength against external forces. Whether it’s guaranteeing stability during complex manoeuvres or withstanding impacts in demanding environments, these components provide the necessary resilience to maintain the integrity of robotic structures as healthy and performative as possible.

In collaborative robotics scenarios, where humans and robots share workspaces, the importance of structural integrity is even higher. Here, compliant joints and impact-absorbing materials serve as indispensable safeguards to minimise the risk of injury in the event of accidental collisions or contact. In industrial automation, where precision and reliability are non-negotiable, robust pressings bolster the structural stability of robots. Such reinforcement enables these systems to execute any task with precision and repeatability, even under heavy loads, ensuring uninterrupted operation in manufacturing environments. Overall, springs and pressings help with robots’ physical longevity and increase your confidence in their safe and efficient performance across various applications.

A person with arms crossed in front of a machine

Stay at the Forefront of Technological Progress with European Springs

As we learnt, in robotics, where innovation never stops to drive progress, springs and pressings relentlessly are more vital than ever for elevating designs and projects to new heights of efficiency and performance.

Whether you’re an engineer pushing the boundaries of automation or a business specialising in robotics, at European Springs, we stand ready to support your visions and projects. With a reputation for excellence and a commitment to top-tier quality, we offer a range of precision-engineered springs and pressings tailored to meet the incredibly specific needs of the robotics industry.

Browse our springs catalogue and contact us today to discover how our products help you achieve your objectives and stay ahead of technological advancement.

A power lines in a power plant

In the power industry, the quest for efficiency, reliability, and, above all, safety is constant. With its complex machinery and ever-evolving technologies, the sector demands a bespoke touch as standard solutions often fall short or don’t deliver the expected results. Amidst the humming turbines and buzzing control panels, custom pressings emerge as essential assets in shaping the foundation of power plant operations and providing the necessary strength and flexibility to support various systems.

In this blog, we will explore how these tailored solutions support the power industry in meeting and exceeding its specific needs, guaranteeing extreme precision and unmatched resilience in a sector where the stakes are high and the margin for error is slim.

The Importance of Bespoke Pressings in the Power Industry

As we mentioned, custom pressings are extremely valuable in the power industry, standing as a fantastic testament to the power of specificity, creating a perfect balance within complex machines. Unlike off-the-shelf alternatives, these pressings are tailored to the sector’s unique demands and offer a personalised approach to ensuring efficient, reliable, and safe operations.

When it comes to power generation, these components emerge as indispensable, as they are accurately designed and manufactured to make sure that every element aligns flawlessly for optimised performance. Whether it is about turbines or control panels, their bespoke nature allows for a perfect fit, resulting in excellent benefits such as reduced downtime and lower maintenance costs.

A large industrial machine with pipes

How Specific Pressings Contribute to Power Plant Operations

In a power plant, where each element must fit precisely for the whole setup to function without mistakes, bespoke metal pressings have a key role in various aspects, from shaping structural components to crafting connectors. These ad-hoc solutions influence the plant’s overall efficiency, safety, and long-term reliability, enabling seamless and continuous power generation.

One key area where these components shine is streamlining processes. In the power generation sector, downtime is not an option. By providing pressings specifically designed with the precise plant layout in mind, installation time is reduced, and compatibility issues are removed from the equation, keeping the industry’s wheels turning smoothly. This, of course, not only translates into immediate benefits but also allows for smoother operations in the long run.

A group of wind turbines in the water

Champions of Versatility: from Turbines to Switchgear

Custom pressings find their way into power plants, proving their versatility in diverse applications. From the towering turbines to the intricacy of switchgear, these components make sure everything works well and without issues.

They contribute to structural integrity in turbines, withstanding intense pressure and temperature conditions for exceptional performance. At the same time, they facilitate precise connections in switchgear, improving the reliability of the entire electrical system.

It is worth adding that the impact of tailored pressings is not limited to heavy-duty machinery alone. Control panels symbolise another critical aspect of power plant operations, which benefits from the flexibility and precision offered by bespoke industrial pressings. As the nerve centre of a plant, control panels demand components that adapt to evolving technologies and operational requirements. With their ability to cater to specific dimensions and functionalities, these pressings become the core of accurate monitoring and control, making the functioning of control systems precise and smooth.

Men wearing safety vests and helmets standing next to a large panel

Precision, Durability, Flexibility

As we have learned so far, custom pressings bring three main advantages to the power industry: precision, durability, and flexibility.

  • Precision is the first pillar, guaranteeing that every component fits perfectly into its designated space, enhancing the overall system efficiency and the safety of power plant operations.
  • Durability is the second one, standing tall in the face of the harsh conditions prevalent in power plants. Whether facing extreme temperatures, high pressures, or corrosive environments, pressings are built to withstand the toughest challenges. Their robust construction ensures a longer lifespan, reducing the frequency of replacements and their costs.
  • Flexibility is the third strength and the secret ingredient that allows these components to adapt to the dynamic nature of the electric power industry. As technologies evolve and operational requirements rapidly shift, they remain agile, accommodating changes without compromising performance. This adaptability is an understandably valuable asset in an industry that is constantly on the brink of innovation and transformation.

A power lines with the sun setting behind them

European Springs: Bespoke Excellence to Power Up Your Business

With our constant commitment to precision engineering and a deep understanding of the industry’s needs, at European Springs, we will deliver our distinctive excellence to the power industry by providing exceptional custom-built pressings. Thanks to us being bespoke spring manufacturers, we will support this complex sector by offering products that embody the perfect union of innovation and functionality, from intricate connectors to robust structural components.

Our dedication to meeting such specific requirements is highlighted by our collaborative, customer-centric approach so that every pressing we produce aligns with the particular requirements of each power plant. Trust European Springs in your quest for efficiency, reliability, and safety within the power industry; contact us today to explore all the opportunities and solutions we offer to power up your business.

European Springs, a leading player in spring manufacturing and a proud member of the Lesjöfors Group, a global powerhouse operating nearly 40 spring and pressing manufacturing companies worldwide, is thrilled to announce two significant management changes.

Stuart McSheehy will be stepping up into the role of Sales & Business Development Director for Europe as part of the Lesjöfors Group, promising to utilise his deep industry knowledge and extensive strategic expertise to lead the region’s growth initiatives.

Stuart shared his insights on the direction in which he plans to steer the company’s growth and operations. He said: “I’m excited to step up into my new role as Business Development Director for Continental Europe within the Lesjöfors Group. I’ll be overseeing operations across nine companies, with a key focus of my new role being to build stronger collaboration while maintaining local autonomy across our European operations, focusing on boosting sales and developing a more focused approach to digital marketing.”.

Alongside him, Jason Wilby takes on the responsibilities of Managing Director for European Springs & Pressings, with a committed focus on pushing the boundaries of innovation and excellence and elevating customer experiences to new levels.

Discussing his new role, Jason said: “Moving up from a Production manager to Managing Director has been quite a journey and demonstrates how our company values internal growth and efficiency. I’m really excited to tackle this new challenge and can’t wait to lead European Springs & Pressings to even greater heights.”.

Christoffer Hedvall, Regional Lesjöfors Vice President for Europe, expressed strong trust in the new appointments, stating, “We are confident in Stuart’s and Jason’s abilities to lead us to new heights of achievement and welcome them in their new roles.”.

These strategic appointments underscore The Lesjöfors Group’s dedication to its growth ambitions and its commitment to serving its customers with unparalleled excellence. By leveraging advanced technologies and upholding stringent quality standards, the company strives to set a new benchmark in the industry.

A group of circular objects with symbolsSustainability has become the world’s foremost concern, encompassing every industry and a wide variety of practices. With this heightened attention, global and local businesses alike are seeking innovative solutions to align with eco-consciousness. Here, Enterprise Resource Planning (ERP) systems, initially designed to streamline operations and boost efficiency, are essential tools for improving sustainability within manufacturing. By using ERPs, manufacturers can easily optimise resource allocation, minimise waste, and reduce their environmental impact.

In this blog, we look into the dynamic relationship between ERPs and sustainability, exploring the areas where these systems make a difference by shaping environmentally friendly practices on factory floors worldwide.

A crumpled paper with a recycle symbol inside

Resource Optimisation and Waste Reduction

The first aspect we want to delve into is how ERP solutions are revolutionising manufacturing processes by optimising resource utilisation and minimising waste. These systems smoothly integrate various aspects of production, from procurement to inventory management, allowing manufacturers to track resource consumption accurately.

Thanks to real-time data analytics provided by ERPs, companies can identify poor or ineffective resource allocation and implement better strategies accordingly. These convenient solutions also facilitate the implementation of lean manufacturing principles, allowing companies to remove their non-value-added activities and, consequentially, additional resource-intensive processes.

A special mention goes to waste reduction by improving inventory management and demand forecasting. By using ERPs to predict demand patterns, manufacturers can adjust production schedules to match actual customer needs, reducing overproduction and subsequent waste. The adoption of just-in-time manufacturing practices, where materials are ordered and received only when needed, leads to substantially reduced inventory stockpiling and waste, which allows the alignment of operational efficiency with environmental sustainability goals.

A person holding a pile of broken glass

Supply Chain Transparency and Ethical Sourcing

With consumers becoming increasingly aware of supply chain transparency and ethical material sourcing, manufacturers are prioritising sustainability in procurement, knowing it can improve their Corporate Social Responsibility (CSR) and positively impact their brand reputation. In this context, ERP systems are an excellent solution to achieve this objective; by centralising supplier data, they allow manufacturers to trace raw materials across the entire supply chain, from source to product. This transparency results in building consumer trust through informed decision-making and holding suppliers accountable for ethical and environmental practices.

Additionally, ERPs streamline collaboration between manufacturers and suppliers through real-time information exchange on sustainability metrics. By engaging suppliers in sustainability initiatives, these solutions allow for positive change throughout the supply chain while also identifying risks of unethical practices.

A green plant with white circles and icons

Improved Energy Management and Carbon Footprint Reduction

Energy management and carbon footprint reduction are core aspects of sustainable manufacturing, and ERPs are essential to making these initiatives possible and effortless. For example, integrating energy monitoring systems and Internet of Things (IoT) devices provides instant insights into energy consumption across all stages of production. From here, manufacturers can analyse energy usage patterns to identify areas of inefficiency and then implement targeted strategies to improve energy consumption and reduce carbon emissions. The adoption of these energy-efficient processes and equipment helps companies minimise their environmental impact and, at the same time, run cost-saving operations.

Another advantage ERPs offer is the opportunity to empower companies to participate in carbon trading schemes and offset programs, which results in additional contributions to carbon footprint reduction efforts.

A puzzle with a red piece missing

Compliance Monitoring and Regulatory Adherence

Compliance monitoring and regulatory adherence are critical aspects of sustainable manufacturing that guarantee companies run their activity respecting environmental laws and regulations. Here is a breakdown of the main aspects that ERPs improve:

  • They provide reliable compliance management features, allowing manufacturers to track regulatory requirements and ensure adherence across every step of the production process. By doing so, companies can streamline audits and proactively address any non-compliance issues.
  • They allow for the implementation of environmental management systems and accreditations, such as ISO 14001, by providing the necessary tools for documentation, monitoring, and reporting.
  • They enable companies to keep up with evolving regulations and adapt their processes accordingly. Through automated alerts and notifications, ERPs keep manufacturers informed of regulatory changes that may impact their work, allowing for timely adjustments to policies and procedures.

Data-Driven Decision-Making for Sustainable Practices

At European Springs, we are aware that data-driven decision-making lies at the heart of sustainability in manufacturing. It allows companies like ours to identify valuable opportunities for improvement and track progress towards sustainability goals. The wealth of data analytics tools that ERPs provide gives manufacturers the chance to gain helpful insights into various aspects of their activities, from resource utilisation to supply chain performance. By employing advanced analytics methods, companies can:

  • Identify inefficiencies
  • Benchmark performance against industry standards
  • Prioritise areas for intervention
  • Predict future trends and anticipate potential sustainability challenges

Through performance dashboards and KPI tracking, manufacturers can monitor key sustainability metrics and identify areas where performance falls short of targets. Overall, ERPs promote a culture of accountability and innovation, where sustainability becomes ingrained in day-to-day decision-making processes.

A hand with a green painted hand holding a leaf

European Springs & Pressings’ Sustainability Statement

At European Springs, our sustainability commitment reflects our ongoing dedication to environmental stewardship and our determination to make a positive difference in the world. As premium spring manufacturers, we want to shape the future of the manufacturing industry and contribute positively to the world around us. From implementing energy-efficient technologies to optimising resources, we constantly make responsible choices that benefit our business and the planet. Our pledge in 2024 and for all the years to come is to reduce carbon emissions, minimise the environmental impact of our operations, and lower our carbon footprint.

If sustainability is a priority for your business and you’re interested in learning more about our initiatives and services, we invite you to reach out to us. Together, we can work towards a greener future for everyone.

A close up of a logo

Over the last decade, we have witnessed some extraordinary technological progress, with a significant shift towards a future where smart devices powered by the Internet of Things (IoT) dominate uncontested. Smart technology is becoming increasingly central in everything we do, whether it’s personal or professional, and at this point, it is worth digging into it a little deeper to understand both its current place and future evolution. Smart springs are essential enablers of this transformation, with complex sensor technologies integrated into their traditional mechanisms. This process undoubtedly paves the way for a new era of efficiency and adaptability across various industries.

In this blog, we will draw upon our extensive spring knowledge and expertise to understand how smart springs are reshaping the industrial landscape, leading the way towards innovation, and allowing the flawless integration of mechanical reliability with the dynamic capabilities of sensor technologies.

A computer chip with glowing lights

Smart Springs as Single Useful Components in Smart Technologies

Smart springs are innovative mechanical components that combine traditional spring mechanisms with advanced sensor technologies. They symbolise an exceptional fusion of the conventional with the contemporary! These tiny metal coils are no longer limited to their primary mechanical role but are also equipped with the ability to sense and respond to their environment, taking their overall functionality to a whole new level.

With the addition of embedded sensors, these once-static components are undergoing a process that turns them into intelligent and adaptable elements. For instance, the real-time detection of environmental changes by these sensors allows smart springs to communicate vital information promptly, introducing a new range of applications across diverse sectors.

A close-up of a car suspension

Applications of Sensor Technologies Across Different Sectors

The applications of sensor technologies extend their reach across multiple sectors, allowing for developments and advancements that entirely redefine the capabilities of various industries. This underscores the versatility and potential of sensor technologies when implemented into traditional mechanical systems, revolutionising the way industries deliver their products and services.

Automotive Sector

In the automotive sector, the incorporation of smart springs into advanced suspension systems represents a notable stride towards a more comfortable and secure driving experience. These intelligent springs, equipped with sensors, dynamically adjust to different road conditions, offering a more comfortable journey and contributing to the overall vehicle’s safety.

Manufacturing Sector

In manufacturing, the power of smart springs improves and optimises machinery performance. By employing industrial springs, companies can monitor and analyse real-time data more accurately and effectively, identifying potential malfunctions before they escalate. This facilitates predictive maintenance to minimise downtime and boost productivity.

Aerospace and Defence Sectors

Beyond automotive and manufacturing, the aerospace and defence industry eagerly embraces the benefits of sensor technologies. Here, smart springs are major contributors to improving aircraft functionality by providing a delicate balance between strength and adaptability. The sensors embedded within smart springs enable constant monitoring of structural integrity, guaranteeing the longevity and reliability of all aerospace components.

Close-up of a machine

Frequent Methods to Produce Smart Springs

Some people may think sensor technology in springs is just a passive addition; however, it is the opposite. Such a significant implementation is a dynamic force shaping the future of operations across various industries, as we just saw. This is why the creation of sensor-integrated springs requires a perfect blend of traditional craftsmanship and avant-garde technologies. Let’s take a closer look at the two most common processes to produce sensor-integrated springs.

Integration During Coiling

One frequent method is the integration of sensors during the coiling process. Here, spring manufacturers strategically embed sensors within the spring structure during its formation so that it gets perfectly integrated into its design; it is an extremely precise engineering process that aims to maintain the spring’s functionality while accommodating the sensor’s placement. By flawlessly integrating sensors during the initial manufacturing stages of compression springs, tension springs, or other relevant parameters can efficiently transmit data, increasing performance monitoring and control in diverse applications.

A close-up of a machine


Another commonly adopted technique is the retrofitting of sensors onto pre-manufactured springs. In this method, springs are initially produced without integrated sensors, which are added later into the existing structure through careful retrofitting processes. This approach allows manufacturers to adapt standard springs for sensor integration to meet specific needs without altering their entire production process. Retrofitting can involve attaching sensors externally or internally, depending on the intended application, guaranteeing secure and durable attachment to prevent sensor displacement or damage during the spring’s life.

Make the Most of Smart Technologies, Choose European Springs

Whether your business operates in automotive and needs sensor-integrated springs to develop responsive suspension systems or requires efficient solutions to reduce machinery downtime in the manufacturing industry, European Springs is here to help.

We take great pride in collaborating closely with our clients to provide them with products that benefit from a tailored approach to deliver premium-quality solutions that address specific challenges, whether in automotive pressings, manufacturing, or aerospace. Browse our online catalogue to find what you are looking for, and do not hesitate to contact us if you want to ask for specific assistance. Our team of experts looks forward to supporting you in bringing to life your projects and contributing to the technology revolution.


    Fields marked with an *are required

    This form collects your name, email, company name, phone number and your enquiry so that one of our team can communicate with you and provide assistance. Please check our Privacy Policy to see what we'll do with your information.